Deprecated: Function set_magic_quotes_runtime() is deprecated in /home/optimaldesign/ on line 18

Strict Standards: Declaration of Walker_Comment::start_lvl() should be compatible with Walker::start_lvl(&$output) in /home/optimaldesign/ on line 0

Strict Standards: Declaration of Walker_Comment::end_lvl() should be compatible with Walker::end_lvl(&$output) in /home/optimaldesign/ on line 0

Strict Standards: Declaration of Walker_Comment::start_el() should be compatible with Walker::start_el(&$output) in /home/optimaldesign/ on line 0

Strict Standards: Declaration of Walker_Comment::end_el() should be compatible with Walker::end_el(&$output) in /home/optimaldesign/ on line 0

Warning: session_start(): Cannot send session cookie - headers already sent by (output started at /home/optimaldesign/ in /home/optimaldesign/ on line 425

Warning: session_start(): Cannot send session cache limiter - headers already sent (output started at /home/optimaldesign/ in /home/optimaldesign/ on line 425
Design Impact » Sustainability

Part IV: Semi-Autonomous Control Framework: Present Performance and Future Work

Please welcome back Sterling Anderson, a Ph.D. candidate at MIT, for the final post in his series on semi-autonomous driver assistance systems.

We’ve made it! Congratulations to all those who hung on through the first three posts in this series. Having done so, you are better prepared to understand and appreciate what I’m about to show you. For those tuning in for the first time (or you who decided to skip straight to the good stuff), welcome! The demonstration that follows should be sufficiently accessible that you’ll be able to appreciate, at least in part, what we’ve done here. If at any point you find yourself asking the question “wait a minute, don’t some cars already do this?” I would suggest you go back and read Parts 2 and 3 to understand the fundamental advances this framework provides when compared to the existing state of the art.


Vehicular accidents are costly. Not only do they end lives, injure travelers, and destroy assets, but they also inspire excessively large, heavy, and inefficient vehicles. Active safety systems can assist error-prone human drivers in avoiding accidents and thereby improve safety, efficiency, and cost. Active safety systems existing today are fundamentally limited in their inability to accurately quantify threat and intervene in more than one dimension to assist the human driver in avoiding it. As such, these systems must be implemented in an ad-hoc fashion, requiring significant fine-tuning to avoid conflicts in their sometimes-competing objectives.

What we have created is an integrated (read: ‘all-in-one’) planning and control framework that performs all of the functions of existing safety systems, in addition to predictively avoiding future hazards. This framework uses a fundamentally-new and incredibly-useful threat assessment method to predict the danger or ‘threat’ posed to the vehicle given its current state and the state of its surroundings. Based on this threat assessment, it then determines when, how, and to what degree it must intervene to ensure that the vehicle does not crash, lose control, or otherwise endanger its occupants. The controller is designed to allow the human driver as much control as possible in low threat scenarios and intervene only as necessary to keep the vehicle safe in high-threat scenarios. In the figures and videos that follow, I’d like to demonstrate a subset of the framework’s capabilities using figures and videos selected from the thousands of simulations and over 800 experimental trials that weíve used to vet it. Note that due to proprietary controls at Ford’s proving grounds, we were unable to record video of our Jaguar S-Type performing these maneuvers. Instead, we recorded telemetry data from each experiment and re-produced the results in high-fidelity simulation software (ADAMS/car).

Each of the videos below overlays the results from two simulations: the gray vehicle is controlled solely by a human driver model whereas the blue vehicle is also fitted with the semi-autonomous controller. In experimental trials, 8 different human drivers, each with different driving styles, were tested.


The experiments shown in the figure below illustrate the semi-autonomous controller’s ability to adjust its behavior to the preference and/or performance of the human driver. The upper plot shows the vehicle path as the driver drifted laterally in the lane (edges shown in gray). The lower subplot shows the proportion of available steering control assumed by the controller.

Note that by simply changing the threshold threat at which the controller intervenes, we can allow the human driver more or less control in low-threat scenarios (between X = 0 and 100 meters) without adversely affecting the controller’s ability to keep the vehicle safely within the lane in high-threat situations. Thus, an inexperienced or cautious driver might prefer more controller intervention all the time in order to smooth out mistakes, while a seasoned or more adventurous driver would prefer that the controller not intervene until this intervention was absolutely necessary. In the figure above, the red solid line represents an intervention function tuned to the more cautious driver while the magenta dash-dotted line shows the results of tuning the controller to more experienced driver. Notice that in both cases, the controller allowed the human to wander freely within the lane, while intervening as necessary to prevent unsafe lane departure. The black dashed line shows what happens when the controller is turned off.


The video below demonstrates the navigation framework’s performance in the presence of stationary hazards such as road edges, roadway obstacles (not shown), etc. In this simulation, the driver of both vehicles actively seeks to remain on the road surface — a difficult feat at 20 m/s (~44 mph).

Notice that including the semi-autonomous controller in the control loop not only keeps the vehicle stable, but also moderates the driver’s inputs in the process. Whereas the unassisted driver oversteers and loses control of the vehicle, the assisted driver notices that the vehicle is responding as desired and is thus more moderate in his steer commands. This allows him to maintain control of the vehicle. Moreover, allocating less than 50% of the available control authority to the controller (see green bar on the right) is sufficient to keep the vehicle on the navigable roadway and within 0.4 meters of the (invisible) line on the center of the roadway that the driver model is trying to track. The combined effect of both inputs (driver and controller) is a vehicle trajectory that more closely tracks the path the driver is trying to follow than the driver could accomplish on his own.

In scenarios where a drowsy, inattentive, or otherwise-impaired driver fails to steer around an impending threat, the semi-autonomous controller foresees the threat, gauges the control action necessary to avoid it, and if the driver does not respond appropriately, takes the necessary control to keep the vehicle safe. Once the threat has been reduced, it returns control to the driver. The video below demonstrates one such case.

In order to avoid moving hazards, the semi-autonomous framework predicts their future position and pre-emptively assists the driver in avoiding those regions of the environment. In both of the videos below, the human driver acts as though he doesnít see the vehicles up ahead (no steering input). In the first video, the controller recognizes that a passing opportunity is available and takes only as much control as necessary to execute that maneuver. The second video illustrates a slightly different case in which the yellow vehicle accelerates once the blue vehicle initiates a passing maneuver (weíve all known one). In this case, the controller behaves much like an alert driver would ñ seeking first to pass, then pulling back in behind the yellow vehicle as it accelerates.


I hope that the ideas discussed in this mini-series have provided a glimpse into the unique challenges and opportunities facing the emerging science of semi-autonomous control. While the issues and potential solutions weíve discussed in these four articles might seem a bit long-winded for a blog, they only scratch the surface of the technology, user studies, and legal infrastructure requirements that must be satisfied before these systems can be commercially implemented. Not the least of these considerations are driver acceptance issues. Almost everywhere I go to present this technology, one of the first questions I am asked is whether our system will come with an ‘OFF’ switch. Many people distrust the invisible face of automation and prefer to feel like they are in complete control. While we cannot completely concede the latter without sacrificing safety, we can certainly improve drivers’ perception and acceptance of autonomy by creating reliable, non-intrusive systems that modify driver inputs as little as possible while avoiding hazards. Significant work remains to be conducted in both human factors and usability studies before this research is road ready (my standard legal disclaimer), but I believe that at some time in the near future, it will be. Here’s to smaller, lighter, safer, and more efficient automobiles!


I’d like to thank Dr. James Allison for his invitation to contribute these articles. Writing them has been an exercise in making my research more understandable to non-technical readers. For those of you who would like more details (and believe me there are many), I would invite you to read any of the applicable papers/theses listed on my website. If you have further questions, or would like to continue the conversation offline, I would be more than happy to visit with you. Please feel free to send me an email and/or leave comments below.

Posted: February 12th, 2011 | Filed under: Design, Modeling, Sustainability, Transportation | No Comments »

Design for Energy Efficiency at ASME iDETC 2011

Last year I announced a conference session very relevant to the theme of Design Impact. We received several submissions, and this year we are soliciting articles again on the topic of Design for Energy Efficiency. If you are working on designing something that helps reduce energy consumption while maintaining or increasing performance or value delivered, please consider submitting a paper describing your work to this year’s ASME iDETC conference. It will be held in Washington D.C. this year from August 28th through 31st.

Abstracts are due by February 11th, and draft papers are due by February 18th. Click here to begin the submission process, and select DAC-7, which is part of the 37th Design Automation Conference (DAC). Articles will be reviewed before acceptance, and authors of accepted papers will have an opportunity to revise their submission after receiving feedback. If you have any questions or suggestions regarding the session or conference, please feel free to contact me, or post your ideas to the comments section below. Read below for more details.

Design engineers have the opportunity to improve quality of life and sustainability simultaneously through better design. One of the most significant areas engineering design has an an impact on is energy use. In addition to reducing consumption, we need to develop and put into service products and systems that use energy more efficiently. By using advanced design techniques, such as design optimization, incorporating more efficient technology, or simplifying systems and processes, engineers can help propel us toward energy sustainability.

Here is a description of the session from the conference website:

Design for Energy Efficiency: DAC-7

The ASME Design Automation Committee invites papers focused on design theory, innovation, or methods that enhance energy efficiency of energy consuming products or systems. Analytical design techniques that reduce energy consumption while maintaining or improving performance are of particular interest. Sample topics of interest include but are not limited to the following:

  • Using optimization to improve energy efficiency
  • Reducing energy consumption through process analysis and redesign
  • Energy recovery and reuse
  • Advanced/intelligent/alternative transportation systems
  • Novel control techniques that reduce energy consumption
  • Efficient energy storage
  • Challenges in transitioning to more efficient technologies
  • Economics of energy efficient technology
  • Energy savings through system simplification

Posted: January 14th, 2011 | Filed under: Design, Energy, Optimization, Sustainability | No Comments »

Designing the Evolution to the Smart Grid

Please welcome Design Impact’s newest guest blogger, Dan Livengood, a Ph.D. candidate from the MIT Engineering Systems Division.

Electricity. In the developed world, electricity is simply interwoven into our lives to the point where most people don’t think about it unless it’s suddenly not there. Although it often gets a bad rap for when blackouts and other disruption events occur, let’s not forget that national and international electricity systems (especially the one in the US and Canada) are often called the largest “machines” in the world. Considering their size and the number of interconnected parts, electricity systems work impressively well. The fact that most people don’t think about electricity except for the moments it’s not there is arguably evidence of that. In recognition of this impressive “machine”, ‘electrification’ was named the top engineering achievement as ranked by the National Academy of Engineering’s ‘Greatest Engineering Achievements of the 20th Century’!

So, is the electrical grid broken? Arguably (which I will not do here), no.

Is there a strong desire to upgrade the system so it operates better and more efficiently? Yes.

The so-called “smart grid” is a hot topic now, with a major influx of investment coming from the 2009 American Recovery and Reinvestment Act’s Smart Grid Investment Grants. However, the grid will not change overnight. In my mind, upgrading the largest “machine” in the world will be a continuous evolutionary process.

For me, this is the connection to the Design Impact blog, and I’d like to thank Dr. James Allison for inviting me to write a guest entry about the smart grid. The smart grid will ultimately have many levels of design. How should we design the smart grid? How should we design the consumer products that will interact with the smart grid? How do we design the evolution to the smart grid while continuing to operate the grid in whatever state it is currently in? With apologies to whoever said this originally (as I have forgotten), an analogy I particularly like is that upgrading the current grid to the smart grid on the fly is effectively equivalent to changing the engine on a commercial jet while it’s flying.

Designing and managing the smart grid evolution will be a huge challenge, although not insurmountable. Ultimately, designing the underlying enabling infrastructure for the smart grid will be key. At the moment, we simply aren’t sure which technologies or systems will work best for the smart grid. To address this, I am a firm believer in experimenting and trying new technologies in demonstration projects, which is precisely the point made recently by Patricia Hoffman, DOE’s assistant secretary for electricity delivery and reliability. The Smart Grid Investment Grants are certainly a solid start at funding some experimental smart grid designs. Some ideas will work, some won’t. As these demonstration projects progress, there will be a desire to keep what works and jettison what doesn’t on the fly, meaning that the smart grid will always be in a state of transition. So, how do we design the smart grid to continuously operate under continuous change?

I return to my point earlier that the underlying enabling infrastructure will be key. One effort to help support this goal is the monumental task being spearheaded by NIST to establish communication standards for the smart grid. Among other things, smart meters, utility energy management systems, home energy management systems, and even appliances will need to be able to ‘talk’ with one another. The full spectrum of devices that will connect to the smart grid will almost certainly come from more than one manufacturer, much like a multitude of devices connects seamlessly to the Internet. Establishing communication and interoperability standards is thus critically important for innovation to flourish on the smart grid just as it has on the Internet.

Smart meters are also undoubtedly a key enabling piece of the smart grid’s evolution. Electricity usage is read off of older meters at a frequency of at most once a month, whereas these smart meters will be read on the order of a few minutes to hourly. With this more frequent feedback of electricity usage, electricity customers will have a better understanding of how much electricity they use and at what times they use it. However, smart meters are just a starting point, and as a few utilities have found out, there will be some growing pains along the way as we transition into the smart grid.

These growing pains are likely part of what was behind a recent announcement that had the smart grid world buzzing: the Maryland Public Service Commission (PSC) turned down Baltimore Gas and Electricity’s smart meter rollout proposal. Personally, I think the Maryland PSC made the right call for reasons along the lines of what Chris King discusses in an article for SmartGridNews (which is a smart grid newsletter that I recommend perusing for anyone interested in easy reading and quick introductions to the many movers and shakers in the smart grid space). It’s not that the Maryland PSC doesn’t support the smart grid. Quite the opposite, I believe. My interpretation of their reasoning is simply that ‘we like where you’re going, but we think your smart grid system design should be better.’ Designing these systems is, frankly, going to be hard. Some pieces, like smart meters, are necessary enablers of the smart grid, but there is much more to truly make the system work. There are many questions to answer as well. Among them, how will customers react in the long run to smart meters, real-time electricity information and possibly time-varying pricing? Will the new smart grid system truly operate more efficiently than the old system? Again, one of the best ways to find this out in my mind is to try out some ideas through demonstration projects, just as Patricia Hoffman suggested.

I’ll stop here for this entry and return at a later date with some thoughts on one or more of the other pieces of the smart grid. I welcome any comments, questions or suggestions of which topic or topics to discuss next.
Once again, many thanks to Dr. James Allison for providing me the opportunity to write this guest entry for his Design Impact blog. Have a great day, everyone!

Posted: July 20th, 2010 | Filed under: Design, Energy, Policy, Sustainability | No Comments »

An Engineer In Awe of the Natural World

On the one year anniversary of Design Impact (Earth Day 2010), I thought I would share some thoughts about how my experience as an engineer has shaped my view of the natural world. The things engineers create can be phenomenally complex, challenging and surprising their makers. We know a lot about engineered systems (they were created by people after all), but we don’t understand them completely. It may be easy to understand their constituent parts, but because of the numerous direct and indirect interactions within a system, understanding how the overall system behaves is a more demanding task. It’s difficult to conceptualize how a small change might propagate throughout a system. Engineering experience has taught us that as systems increase in complexity, the consequences of change tend to be more profound. People often get first-order effects right, but some non-intuitive outcomes are the result of a chain reaction several layers deep. For example, engineers thought they understood the behavior of the Millennium Bridge very well before opening day, but were in for a surprise:

In hindsight the interaction between the sideways bridge motion and how people walk is clear, but it eluded engineers until it was too late.

Now take a moment and consider what we know about natural systems. They are resilient, elegant, and essential to human survival. We have studied the natural world and have remarkable (but incomplete) knowledge of it. As with engineering systems, we might have reasonable component-level knowledge, but our comprehension of the intricate inter-dependencies within natural systems is truly embryonic. Lack of system-level knowledge hinders our ability to predict the full consequences of human influences. We were caught off-guard by the results of a single interaction in the Millenium Bridge system - something that we built! What then can we expect when we mess with systems that we did not create, systems with structure only partially revealed through our observation and study?

Humans have several advantages when it comes to understanding engineered systems. We made them and know how they are put together. We can consult specifications and computer models used in their design. In contrast, we don’t have access to design plans for sophisticated natural systems that have evolved and adapted over millennia. We are constantly discovering new relationships and behavior, as well as the importance of seemingly insignificant species in ecosystems. As John Muir once said, “When we try to pick out anything by itself, we find it hitched to everything else in the universe.” The intricate links between elements of the natural world are astounding and humbling, surpassing by magnitudes the complexity of mankind’s most sophisticated creations. We can understand and predict correctly the effect of some disturbances on natural systems, but the full ramifications of human impact are likely to be more extensive and deeper than we expect — far more surprising than the wobbly bridge.

Even with modern analysis tools, predicting the results of substantial changes in engineered systems is somewhere between hard and impossible. To avoid unpleasant surprises when designing especially complex systems (automotive design, for example), engineers typically put forward designs that are essentially small perturbations of previously proven systems. We are conservative and resist ambitious changes in engineered systems, yet for some reason (economic externalities?) humans are quick to risk big impacts (pollution, unsustainable resource depletion) on the natural systems we depend on. Some dismiss the notion that humans can have extensive impact, even labeling this idea as arrogant. This convenient rationalization for continued consumption growth is short-sighted and blind to history. Human disruption has caused collapse of ecosystems, even whole societies. While past collapses have been regional in scope, modern society is more populous, resource intensive, and globally interdependent than ever, enhancing our potential for impact.

In summary, we need to recognize the limits of our ability to predict the consequences of human disruption; these consequences are likely to be more profound than we expect. Our interest in the long-term health of natural resources and ecosystems provides incentive to be conservative in our consumption and impact. Our current trajectory cannot be maintained; no system can keep expanding without bumping into limits. Planning and self-imposed restraint are more pleasant options than waiting until we run up against hard constraints such as resource depletion. As the most intelligent and powerful earthly inhabitants, stewardship to preserve is ours. Over the last year Design Impact has addressed ways to leverage our intelligence to provide a high quality of life without applying unsustainable pressure on our world, and will continue to explore how we can create a brighter future for ourselves.

Posted: April 22nd, 2010 | Filed under: Design, Sustainability, Vision | No Comments »

Virtual Energy Conference Tomorrow

A major theme of Design Impact is how better engineering analysis and design can improve the sustainability of our society. One important way this can be realized is through advancing renewable energy sources, as well as improving energy efficiency. For example, advanced design techniques can help us make wind turbines and solar arrays more effective, as well as bring them online faster. In addition to addressing the resource side of the energy issue, advanced design techniques, such as design optimization, can help engineers develop transportation systems, buildings, and other engineered products that consume far less energy, while still meeting performance demands.

We have an opportunity tomorrow to learn from an impressive array of speakers at the MathWorks Virtual Energy Conference. Anyone can register (free) to watch and listen to the speakers, or to network with other participants. Many of you have probably already heard of or participated in virtual conferences, an emerging trend. If not, the basic idea is to capture many of the benefits of attending a conference in person, but via a virtual environment. You can participate from your home or office computer. I hope to see you at tomorrow’s conference!

Posted: March 24th, 2010 | Filed under: Design, Energy, Sustainability | No Comments »

Heliostats, Prisms, and Platinum

Genzyme Center[Image Credit: TreeHugger]

Earlier this week I had the grand opportunity to tour the Genzyme Center in Cambridge MA with a group of engineers. This building is a little out of the ordinary; it was designed using a whole-systems approach to dramatically reduce its environmental impact, while providing an exceptional environment for those working inside. A system of heliostats on the roof track the sun throughout the day, aiming natural light downward through the expansive atrium. Gently swaying prisms suspended in the atrium then scatter this light throughout the rest of the building. Interior gardens, terraces, and pools not only add to the aesthetics, but contribute inviting areas for employee collaboration, and provide ecological services that help maintain quality of the interior environment.

Among the several distinctions awarded to the Genzyme Center is the vaunted Platinum LEED (Leadership in Energy and Environmental Design) Certification. The building was completed in November 2003, and is now on the elite list of 80 buildings worldwide with the highest LEED certification. You can read more about the Genzyme Center’s LEED profile here. What does it mean for a building to be LEED certified? While reducing fossil fuel consumption is an important consideration, there are several other characteristics evaluated, including:

  • Sustainability of site location
  • Water efficiency
  • Energy and atmosphere (building sector energy use is 48% of the U.S. total: substantial opportunity for improvement here)
  • Materials and resources
  • Indoor environmental quality (low VOCs, occupants can control their environment)
  • Location and linkages (how people will commute to this building: support for bicycle commuting, access to public transportation)
  • Awareness and education (helping building users get the most from building features)
  • Innovation and design process (designing the building as a whole system, not a collection of parts)
  • Regional priority

In addition to capitalizing on natural light, the Genzyme Center utilizes a variety of other innovative techniques to cut down on energy consumption. The building is designed to exploit natural convection currents for heating and cooling. About a third of the exterior has a ‘ventilated double-facade that blocks solar gains in summer and captures solar gains in the winter.’ What was most impressive to me was the flexibility of the systems in the building. The building manager can try out new strategies for heating, cooling, lighting, etc. to adapt to changing conditions. This kind of flexibility makes possible the discovery of synergies between systems that enable even better energy efficiency than what was expected during building design. Building management for the Genzyme Center seems to be an ongoing optimization process. Right now people control the adaptation, but it seems to a be a perfect application for machine learning. Does anyone know of building systems that use machine learning or other algorithms to fine tune operations?

An obvious question LEED certification, and sustainable building design in general, is whether the additional cost for alternative building approaches is worth the investment. According to a report for the California Sustainable Building Task Force, an initial investment of an extra 2% of the building cost will yield more than ten times the initial investment of the life cycle of the building. In addition to energy, water, and other resource savings, companies that invest in LEED certified or other sustainable building practices reap the benefits of increased worker productivity. My tour of Genzyme Center this week convinced me of the reality of this last point.

Sustainable building practices may cost more up front, but are sound business decisions when a long-term perspective is maintained. Greener building design is not only the right thing to do for humanity and our world, but also for businesses.

Posted: November 14th, 2009 | Filed under: Design, Energy, Sustainability | No Comments »

Design for Energy Efficiency at ASME DETC 2010

A central theme of Design Impact is how design engineers can improve quality of life and sustainability simultaneously through better design. Design engineers make decisions about how things work and how they are made, and these decisions have profound impact on our society. One of the most significant areas engineering design has an an impact on is energy use. In addition to reducing consumption, we need to develop and put into service products and systems that use energy more efficiently. By using advanced design techniques, such as design optimization, incorporating more efficient technology, or simplifying systems and processes, engineers can help propel us toward energy sustainability. It’s important to recognize that efficiency alone won’t solve our energy challenges. Without incentive to consume less, energy consumption may not go down. Motorists, for example, tend to drive more miles as fuel efficiency rises. We need policy changes that stimulate energy conservation, which in turn will drive demand for energy efficient products and improved engineering design.

To provide a forum to discuss recent advances in energy efficiency research, I’m organizing a new session (DAC-9) at 2010 ASME iDETC, an engineering design conference organized by the American Society of Mechanical Engineers. The conference will be held August 15-18, 2010 in Montreal. The topic of the session I’m organizing is Design for Energy Efficiency, and I’m hoping to get the word out early about this session to stimulate interest in the topic and encourage strong participation. If you are working on any projects that involve improving energy efficiency through design, please consider sharing what you have learned by contributing to this session. Draft papers are due by January 29th, 2010. If you have any questions or suggestions regarding the session or conference, please feel free to contact me, or post your ideas to the comments section below. Here is a description of the session from the conference website:

Design for Energy Efficiency: DAC-9

The ASME Design Automation Committee invites papers focused on design theory, innovation, or methods that enhance energy efficiency of energy consuming products or systems. Analytical design techniques that reduce energy consumption while maintaining or improving performance are of particular interest. Sample topics of interest include but are not limited to the following:

  • Using optimization to improve energy efficiency
  • Reducing energy consumption through process analysis and redesign
  • Energy recovery and reuse
  • Advanced/intelligent/alternative transportation systems
  • Novel control techniques that reduce energy consumption
  • Efficient energy storage
  • Challenges in transitioning to more efficient technologies
  • Economics of energy efficient technology
  • Energy savings through system simplification

Posted: October 13th, 2009 | Filed under: Design, Education, Energy, Optimization, Sustainability | No Comments »

Chapter 18: The Great Disruption, and the Case for Design Optimization

Thomas Friedman, the author of Hot, Flat, and Crowded, has invited readers to contribute ideas for a final chapter for the second version of the book. He wants to hear our thoughts on how we might ‘grow people’s living standards in a more sustainable and regenerative way’. (If you haven’t yet read HFC, I highly recommend it.) Here is my response to Friedman’s invitation:

In Hot, Flat, and Crowded you discuss the importance of ’smarter’ design; by changing how things are built, how they work, and are retired, we can reduce energy consumption and environmental impact dramatically, as well as improve quality of life and national security. I believe better design is at the core of a green revolution, and we need increased efforts to help others solidify mental links between design improvements and a vision for a sustainable future. In addition to helping citizens deepen their appreciation for the role of design, we must address this issue on two other fronts: public policy and engineering expertise. We need the right policy and incentives to set the stage for a transition to sustainability, as well as the technical expertise to implement the transition rapidly. I would like to address the latter issue.

To realize a green revolution, we can’t settle for products that are ‘good enough’, or green technology that evolves slowly. Instead, we must seek to develop the very best, most efficient designs, and do so quickly. Instead of taking small steps each year with slightly more efficient cars, slightly better wind turbines, let’s make giant leaps! We need the backing of citizens, the support of policy makers, and boldness from engineers and engineering educators to advance our ability to create sustainable systems and products. Researchers have developed impressive new engineering design methods the last few decades that can help us create products and systems that use less energy and other resources, while making leaps forward in performance. Some of these methods are mature and proven, but unfortunately are not yet used widely by engineers. First, let’s have a look at the conventional design process.

Suppose we were designing a car to be very energy efficient, but still performs well at a reasonable cost. Using a conventional design process, engineers would generate design ideas, test these candidate designs, propose new designs, and iterate until they converge on a design that meets (or comes close to) design targets. In the past, engineers relied heavily on expensive physical prototypes for testing. More firms now use computer models that predict how something will perform without having to build it. While this saves time and money, design refinements often are still made by engineers based on test results, experience, and expertise. Managing all these often conflicting design decisions is often overwhelming, particularly as products evolve and become more complicated; engineers stop when they find a design that meets basic requirements, instead of pursuing the best possible, or optimal, design.

One prominent method developed by researchers is design optimization. Other readers have also described optimization as an important solution; I hope to strengthen this position and clarify the link between optimization and engineering design. When using design optimization, engineers work to minimize or maximize some important aspect of a product, in addition to seeking to meet design requirements. In the car example, we might seek to maximize fuel economy, while meeting acceleration, handling, comfort, cost, safety, and other constraints. Framing a design problem in this way allows engineers to use computer models and powerful optimization algorithms together to help generate the best possible design. In this process design candidates to be tested are chosen analytically using mathematical techniques, reducing the number of tests and time to market. It can help engineers learn what is really achievable, opening our eyes to new possibilities. Design optimization also accelerates design evolution by enabling engineers to make more substantial design changes between product generations, instead of just small perturbations of the last version (as is usually the case now).

The design optimization approach is actually a pretty natural fit for how engineers already go about designing things; using formal design optimization is an enhancement that produces better results in less time, and leverages investments many firms have already made in computer modeling. It’s not a push-button solution; it automates some aspects of design, but requires engineering expertise and experience to implement successfully. (In the parlance of The World is Flat, design optimization is a high-level, ‘icing’ activity). Awareness is perhaps the biggest hindrance to the adoption of design optimization. It needs to be taught in undergraduate (not just graduate) engineering courses, as well as in industry training programs.

In summary, design engineers make a lot of important decisions that have tremendous impact on our world. Moving beyond status quo design processes can help engineers deliver sustainable products and systems while improving living standards; these changes in engineering design are essential to a successful green revolution. Right now there is a lot of low-hanging fruit; there are many opportunities to improve our world through better design. Design optimization can help us put new technology into production faster, as well as refine systems that use existing technology. This can help us bring energy efficient designs into production more quickly, and accelerate the transition to renewable energy systems. We have the technical tools, but we need the societal impetus to put them to broad use.

James T. Allison, Ph.D.

Posted: September 24th, 2009 | Filed under: Design, Education, Energy, Optimization, Sustainability | 1 Comment »

Comprehensive Anticipatory Design: 2010 Buckminster Fuller Challenge Announced

Last May I wrote about the winner of the 2009 Buckminster Fuller Challenge: the MIT Media Lab and their solution to urban personal mobility. The topic for the 2010 Challenge was just announced. The Buckminster Fuller Institute will award $100,000 to the 2010 winner, and is looking for entries that exhibit broad design solutions to “create an enduringly sustainable future for all”. Elizabeth Thompson, Executive Director of the Buckminster Fuller Institute, explains:

We’re looking for comprehensive anticipatory design solutions that address multiple problems without creating new ones down the road - integrated strategies dealing with key social, economic, environmental, policy and cultural issues. Our entry criteria is deeply inspired by what Fuller termed comprehensive anticipatory design science - a methodological approach to solving complex problems that we feel holds an important key to how innovators need to be thinking about the design of strategies if they are to have a transformative effect on the system as a whole.

This vision moves beyond traditional problem solving approaches. We need more than just a purely technical solution to energy problems, for example. We need better design of technical products and systems, but we also need to create the right policies, incentives, and other components of a holistic solution that creates “an enduringly sustainable future for all”. Engineering Systems is one field that seeks to link traditional engineering analysis and design with other disciplines to arrive at comprehensive solutions; you can read more about engineering systems in this earlier post.

I’m thrilled to see the BF Institute’s continued devotion of resources and support to innovative design solutions that address some of our most important problems, particularly now with the interdisciplinary emphasis. Looking outside our own discipline, whether it’s engineering, economics, health care, or something else, can be a real challenge. But it’s at the interfaces between disciplines, I believe, that the greatest opportunities lie. We’ve created nicely partitioned disciplinary silos to work within, and have developed tremendous depth of knowledge within these boundaries. We will open the door to greater progress if we start to look directly at the boundaries, and perhaps allow them some permeability and pliability.

Posted: August 21st, 2009 | Filed under: Design, Sustainability | 2 Comments »

The Oil Age

Frank Wicks gives a nice history of the “Oil Age” in this month’s issue of Mechanical Engineering magazine. His article traces the rise of petroleum in modern society, and discusses challenges we face today. He describes early medicinal uses of petroleum by Seneca Indians, the first commercial drilling, and the transition to ubiquitous petroleum use. In the early stages of the oil age, kerosene for lighting was a dominant petroleum product, and natural gas and gasoline were wasted byproducts. In 1879, “Thomas Edison predicted the end of oil when he invented the light bulb”,  but this was of course on the heels of internal combustion engines and the phenomenal expansion of petroleum consumption that helps fuel our modern economy.

Wicks discusses how oil supplies are bounded: “Although oil has been found … at many locations, it should always be recognized to be a finite resource because we can burn it far faster than nature can replace it.” In fact, this issue was recognized very early on. Wicks explains that “Henry Ford feared that gasoline from oil would not last long enough to sustain a rapidly growing auto industry, and started research for alternatives.” While there has been enough gasoline to fuel a booming auto industry for more than a century, it will not last forever. Some predict that we are near peak oil, evidenced by the current production rates and the declining rate of discovery. Estimates of how much longer petroleum supplies will last vary widely. Wicks cites one estimate that postulates that:

…the world started the Oil Age with about two trillion barrels of recoverable oil. About half of that has been extracted. The remaining trillion barrels represent about a 30-year supply at the current rate of consumption and will be much more difficult to recover. The fundamental problem is that oil is too good. It is required for most things that we do. The alternatives are mostly inferior or less acceptable. Adapting to the next half and the end of the Oil Age may be the greatest challenge our civilization has ever had to face.

Regardless of how much is actually left, the amount is finite and irreplaceable. It will be increasingly difficult (and damaging) to recover, meaning that we will not be able to keep up current rates of consumption. In addition, we rely on petroleum for far more than fuel. It is feedstock for countless products (think of how many things are made using petroleum-derived plastics and chemicals). It may not happen tomorrow, or perhaps not even in some of our lifetimes, but at some point petroleum will become scarce and very expensive. How are we going to transition to alternatives? Clearly, the earlier we start, the easier the transition will be. And if we curtail petroleum use for fuel sooner than later, then perhaps we can prolong the transition to alternatives for petroleum-derived plastics and chemicals.

Wicks’ article focused on the issue of petroleum finiteness, which is only one factor compelling us to curb consumption. When we combine finiteness with national security, climate change, and other relevant issues, it’s clear we need to take action and make rapid progress. We’ve grown accustomed to the ease of oil, and change to something different can intimidating, but these changes can also be exciting opportunities to create a cleaner, more sustainable world to live in. These changes could even be liberating, leading to better quality of life for more people.

One interesting aspect of this article is its audience: engineers. It’s essential that this audience recognizes the importance of moving (quickly) toward a sustainable way of living. Engineers are the folks who can develop the  alternatives we need. But creating alternatives won’t automatically make society sustainable; alternatives need to be implemented and used widely. The rest of us need to support efforts to create complete solutions that combine technical advances with the right public policy, the right incentives, and enough popular support to help wean us off petroleum (and other unsustainable practices). Supporting these efforts is an important way to amplify our individual impact.

Posted: August 19th, 2009 | Filed under: Energy, Policy, Sustainability | No Comments »